Validation of Digenetic Trematodes, Using Molecular Markers, a Case Study of Indian Species of *Mesocoelium* Odhner, 1911

Shailendra Ray, Nirupama Agrawal & K.C. Pandey

Department of Zoology, University of Lucknow, Lucknow, 226007, India E-mail : dr_neeru_1954@yahoo.co.in

Abstract : Morphological variations in *Mesocoelium sociale* Odhner, 1911, obtained from *Duttaphrynus melanostictus* Schneider, 1799 from a water body near Barabanki have been observed. Five Indian species of *Mesocoelium* viz. *M. varunae* Baugh 1956, *M. thapari* Gupta & Jahan, 1976, *M. mithiliae* Kanth & Srivastava, 1989, *M. melanostictii* Ratnamala Rao, 1989 and *M. asymmetrovitellarius* Kumari & Verma, 1992 are considered synonyms of *M. sociale*. We also doubt inclusion of *M. burdwanense* Mukherji, 1968 under the genus *Mesocoelium*. Phylogenetic study, nucleotide composition analysis, evolutionary divergence and multiple sequence alignment, based on partial 28S rDNA, of *Mesocoelium sociale* and sequences of two species of the genus retrieved from GenBank are also done.

Keywords : Digenea. Mesocoelium. Taxonomy. Duttaphrynus melanostictus. 28SrDNA

Introduction

Mesocoelium is the type genus of the family Mesocoeliidae Dollfus, 1929. Odhner (1911) described M. sociale, the type species of the genus from Bufo melanostictus Schneider, 1799 in Burma. Agrawal and Pandey (1980) also recorded M. sociale from Bufo melanostictus. Several species were established earlier, on the basis of structural variations in India (M. varunae Baugh, 1956, M. burdwanense Mukherji, 1967, M. thapri Gupta & Jahan, 1976, M. melanostictii Ratnamala Rao, 1989, M. mithilae Kanth & Srivastava, 1989 and M. asymmetrovitellarius Kumari & Verma, 1992). The taxonomic and specific characters chosen for specific diagnosis of other Indian species of Mesocoelium sp. are unreliable and controversial (Calhoun & Dronen, 2012). Dronen et al., 2012 emphasized the need of additional study to validate the previously described species of Mesocoelium. Recently, 28S region, nucleotide sequence analysis, transition and transversion ratios have proved useful tool for differentiation of digenean species (Takach et al., 2000, Olson et al., 2003).

An extensive survey of Indian *Duttaphrynus melanostictus*, Schneider, 1799 (Syn: *Bufo melanocystis*), for an interesting digenean *Mesocoelioum* Odhner, 1911 was, therefore made, during July-August 2013-14, from local water bodies near district Barabanki. Specimens (680) collected during present work had several morphological variations. However, the molecular markers proved them to be of the same species. We also assess the extent of genetic diversity of two allopatric forms (i.e. *M.* sp1 and *M.* sp2), described in Australia and Central America, based on 28S r DNA.

Material and Methods

Duttaphrynus melanostictus, Schneider, 1799 (Syn: Bufo melanocystis) were collected from local water bodies near

district Barabanki (26°30' and 27°19' N and 80°55' and 81°55' E). Hosts were anesthetized and dissected. Almost all visceral organs were carefully examined under binocular microscope in Petri-dishes (containing normal saline, 7.4 pH). Parasites were collected from the gut and studied alive and fixed mounted specimens. They were flattened, with the help of a cover slip in 70% alcohol (overnight), stained with Aceto-alum Carmine, dehydrated in ascending grades of alcohol, cleared in clove oil and mounted in DPX. Figures were drawn with Camera Lucida, attached to Phase Contrast Microscope (Olympus CX-41). Measurements were taken in micrometer (µm), followed by range in parenthesis. Holotype and voucher specimens were deposited in the Helminthological collection of Zoological Survey of India, Kolkata (accession no XXXX). Parasites were collected in 100% ethanol for molecular study. Single specimen was processed for DNA isolation, with slight modifications in protocol of Qiagen's DNeasy Tissue Kit (Cat. No.69504). Partial 28S rDNA region of Mesocoelium was amplified in an Eppendorf Master Cycler Personal (PCR), using forward (5'- ACCCGCTGAATTTAAGCAT-3') and reverse (5'-CTCTTCAGAGTACTTTTCAAC-3') primers. Each PCR amplification reaction is performed in a final volume of 12.5 µl, containing 10X buffer (100mM Tris (pH 9.0), 50 mM KCL, and 15mM MgCl2), 2.5 U Taq Polymerase enzyme, 10 mM of each dNTP's and 3µl DNA. The PCR conditions are as follows: initial denaturation at 94°C for 5 min, 25 cycles of denaturation at 94°C (1 min), annealing at 54°C (1 min), extension at 72°C (1 min), followed by a final extension at 72°C for 5 min. PCR products were electrophoresed in 2% agarose gel in TAE buffer, stained with ethidium bromide (Etbr) and visualized under UV radiations. PCR products were sequenced with same primer by Amnion Biosciences in forward direction, using an automated sequencer (Model Name 3130x1/3130x/GA-1203-019). Sequence of our interest was compared with *Mesocoelium* sp. *M.* sp.1 and *M.* sp.2 (retrieved from GenBank) from Australia and Central America (Table 2) using *Lechriorchis tygarti* Talbot, 1933 (family: Reniferidae Pratt, 1902) as an out group. Sequences (28S rDNA) were analyzed by Maximum Likelihood (ML) and Minimum evolution (ME) methods of MEGA 5 (Tamura *et al.*, 2011). Robustness of

inferred phylogenetic trees was assessed by bootstrap value i.e., 1,000 search replicates. The sequences of 28 S rDNA regions were compared by using CLUSTAL W for each query species. Following Table 1, includes different species of *Mesocoelium*, described in India, their hosts and localities. Species wise morphometric ratios are presented in Table 3.

Name of Parasites	Host	Geographical origin (locality)
M. sociale, Odhner, 1911	<i>Duttaphrynus melanostictus,</i> Schneider, 1799	South central India
M. varunae, Baugh 1956	Bufo marinus, Linnaeus, 1750	Northern India
M. burdwanense, Mukherji, 1968	Calotis versicolor, Daudin, 1803	India
M. thapari, Gupta & Jahan 1976	Rana tigrina, Daudin	Northern India
<i>M. mithilae</i> , Kanth & Srivastava 1989	Heteropneustes fossilis, Bloch, 1794	Eastern India
<i>M.melanostictii</i> , Ratnamala Rao, 1989	<i>Duttaphrynus melanostictus,</i> Schneider, 1799	South India
<i>M. asymmetrovitellarius</i> , Kumari & Verma 1992	<i>Duttaphrynus melanostictus,</i> Schneider, 1799	Eastern India

 Table 1
 List of described Indian species of Mesocoelium

Table 2 Gen Bank references used in this study, their geographical origins and Accession Number

Sl .No	Parasite species	Genbank number	Locality	Host
1	Mesocoelium sp.1	AY222277	Australia	Sibon nebulata, Liner, 1994
2	Mesocoelium sp.2	AF433677	Guatemala(Central	Bufo marinus, Schneider, 1799
			America)	
3	Mesocoelium sp.3	XXXXXX	India	Duttaphrynus melanostictus, Schneider, 1799
4	Lechriorchis	JF820599	USA	Thamnophis sirtalis, Garman, 1892
	tygarti			

Result & Discussion

Description of *M. sociale* (Plate I. Figs 1-8):

Body elongated, anterior end oval, posterior end rounded (varying in posterior body width), narrow (Fig.1) to round (Fig. 2 & 4), beset with backwardly directed spines, 775 (760-790) long and 220 (200-240) wide. Oral sucker terminal/sub-terminal, 437 (221-432) long, 329 (213-232) wide. Pre-pharynx not observed. Pharynx round, 205 (134-142) long, 86 (81-92) wide. Esophagus very short or absent 11 (10-12) long (Fig.1 & 2). Ventral sucker smaller than oral sucker, 162 (152-173) long, 167 (164-171) wide.

Extension of intestinal caeca quite variable; equal (Fig 1, 4 & 6), unequal (Fig. 2, 3 & 5), restricted up to middle region of body (Fig.6 & 8) or slightly beyond middle region. Testes two, round to oval, 213 (131-164) long, 197 (126-143) wide, symmetrical, one on either side of ventral sucker. However, in some specimens it is obliquely placed (Fig.3, 5&7) or could be abnormally developed (Fig.2). The inter-testicular distance (fig.3&8) may be quite distant. Vasa efferentia were also observed in few specimens. Cirrus sac oval, 210 (134-152) long, 105 (60-90) wide, having bipartite seminal vesicle, short pars

prostatica, surrounded by a number of prostate glands and an ejaculatory duct. Genital pore is at the level with intestinal bifurcation or pre-bifurcal (5). Ovary, round to oval, post-testicular, 157 (150-165) long, 128 (120-136) wide. Receptaculum seminis, rounded. Laurer's canal is not visible. Vitellaria are glandular, laterally arranged and their distribution is also variable. They extend from pharyngeal region up to the end of intestinal caeca, mostly non confluent, sometimes confluent as well (Fig. 2, 4 & 5), could be un-equal on one side of intestinal caeca or asymmetrical (Fig. 3 & 7). Uterus is extensive, filled with eggs, convoluted, mostly confined to pre-acetabular region and extending posteriorly in the hind part of the body, in some having loose uterine coiling (Fig 2 & 5). The metraterm is highly muscular and opens into genital pore near intestinal bifurcation. Genital pore variable mostly bifurcated; in some pre bifurcal (1&5) in rests are post bifurcal. Eggs, oval and operculated 15 (10-20). Excretory bladder Y shaped. Comparative morphological variations are given from original drawings (in Plate II) and records comparative measurements of earlier described Indian species (Table 3).

Plate I. (Fig.1-8) Variation in morphological structures of *M. sociale*

 Table 3 Morphological Variations in Seven Species of Mescoelium

Charecteristi	M.sociale	M.varunae	М.	M. thapari	M.mithilae	M.melanostic	M.asymmetro
c feature			burdwanense			tii	vitrovitellari
							US
Body	spinose	spinose	aspinose	aspinose	aspinose	spinose	aspinose
Body length	220-775	720-1810	1845-450	2430-2800	560-960	360-1380	1840-1206
Oral sucker	329-437	180-250	270-234	250-260	165-195	330-350	180-252
Pharynx	86-205	70-80	54-72	90-100	45-45	110-150	72-108
Ventral	162-167	130-200	261	190-200	105-135	230-270	180-108
Sucker							
Esophagus	-	-	-	6-10	15	-	-
Cirrus sac			162-153		105x135		126-132
Position of	Bifurcal	Bifurcal	Bifurcal	Post-bifurcal	Bifurcal	Bifurcal	Bifurcal
genital pore							
Vitellaria	Pharynx to	Pharynx to	Ventral	Poorly	From caecal	From the	From the
	caecal end	caecal end	sucker to	developed,	bifurcation	level of oral	level of oral
			middle of	from	to hind end	sucker	sucker to
			body	Oral sucker		to caecal end	caecal end in
				to caecal end			one side only
Testis	311-347	105-130	T1-153-162	T1-110x170-	T1-135-	T1-270-	T1-370-306,
			T2-189-135	170x11	165x135-165	360x230-380	T2-234-306
				T2-130x90-		T2-300-	
				160x100		320x240-360	
Ovary	150x120	140	72	90-100x60-	135x165	240-	180-252
				90		320x230-270	
Size of egg	-	62x40	264-288x14-	45x40	45x23	38x28	36x18
			17				

Plate II. Figures (9-15) from the original literature 9. *M. assymmetrovitellarius* 10. *M. burdwanensis* 11. *M. sociale* 12. *M. melanostictii* 13. *M. thapari* 14. *M. mithlae* 15. *M. varunae*

Molecular study

The amplicon of 28Sr DNA gene vary in range (376; *M.* sp.3-1258; *M.* sp.1). Sequences (partial 28S rDNA) of *Mesocelium* sp. 1, *M.* sp. 2, *M.* sp. 3 are analyzed using Maximum likelihood and Minimum Evolutionary method of MEGA 5. *L. tygarti* belonging to family Telorchiidae Looss, 1899 is used as an out group. *M.* sp. 2 and *M.* sp.1 are grouped into cluster one. While *M.* sp. 3 (Indian species) formed a distinct clade. These variations are due to geographical barriers and both are dissimilar at variant nucleotide positions except C, C-2 and G-3 (Table.4). Indian isolate *M.sp3* forms basal clade by both ML & ME methods (Fig. 1a & 1b) and is different at each nucleotide positions excluding C-2 and seems to be distantly related with other two species.

The amplicon of 28Sr gene vary among genera, from 376 bp of *M. sp3* to 1258 bp of *M. sp1*. Average of 3 nucleotide sequences has total 1251 positions in the final data set. The nucleotide frequencies are 22.14% (A), 25.73% (T/U), 30.48% (C), and 21.65% (G). Nucleotide sequence analysis revealed that, fewest Cytocine (19.2%) are at first

position. The degree of bias depends upon the codon composition i.e. 20.1% Cytocine in the first position, 21.8% in the second position and 21.4% at third position. All three positions are rich in Guanine at first 31.5%, the second 32.9%, and third 31.2%. Substitution pattern and rates are estimated through Tamura-Nei (1993) model (+G+1)[1].

The compositional bias differences between sequences (*M.sp2/M.sp3*, 0.24446, and *Msp3/Msp1*, 0.00240) have been found. However, this difference 0.014615 has been noticed in between *Msp2/Msp1*, (Table.5). The transition/transversion rate ratios are k_{1-6} .754 (Purines) and $k_2=7.659$ (Pyrimidines). The overall transition/transversion bias is R=3.564, where R= [A*G*k_1=T*C*k_2]/[A+G]*(T+C)]. The genetic divergence varies (*M.sp2/M.sp3*) is 926.00, (*Msp3/Msp1*) 923.00 and *Msp2/Msp1* 927.00 (Table.6). Estimate of average evolutionary divergence of overall sequence pairs is 595.500. There is no significant homogeneity has been observed for three species of *Mesocoelium*. The multiple sequence alignment shows both allopatric species are more similar than query species.

Asian J. Exp. Sci., Vol. 31, No. 1, 2017; 15-23

II. Phylogenetic Methods

Fig.1 a & b. Phylogenetic tree of three species of *Mesocoelium*, by using MEGA5 a. Neighbor Joining (NJ) b. Minimum Evolution (ME)

Domain: Data																				
	T(U)	С	А	G	Total	T- 1	C-1	A-1	G-1	Pos #1	T- 2	C-2	A-2	G-2	Pos #2	T- 3	C-3	A-3	G-3	Pos #3
M.sp. 2	25.4	21.3	21.3	32.0	1251.0	27	20.4	21.6	30.7	417.0	24	21.8	19.7	35.0	417.0	25	21.6	22.8	30.2	417.0
M.sp. 3	24.5	20.7	23.0	31.7	1129.0	22	20.7	26.3	30.8	377.0	26	21.8	21.5	31.1	376.0	26	19.7	21.3	33.2	376.0
M sp.1	25.3	21.3	21.5	31.9	1251.0	29	19.2	18.7	33.1	417.0	22	21.8	23.7	32.4	417.0	25	22.8	22.1	30.2	417.0
Avg.	25.1	21.1	21.9	31.9	1210.3	26	20.1	22.0	31.5	403.7	24	21.8	21.7	32.9	403.3	25	21.4	22.1	31.2	403.3

Table 4 Showing nucleotide sequence analysis

	1	2	3
M. sp 2			
M. sp 3	0.24446		
M. sp 1	0.00240	0.014615	

Table 5 Showing the difference in base composition bias per site

	1	2	3
M. sp 2			
M. sp 3	926.00		
M. sp 1	923.00	927.00	

Table 6 Showing the genetic divergence among three species of Mesocoelium

Nine body types (lanceatum, zhejiangensis, pesteri, mesembrinum, monas, brieni, sociale, leiperi, carli) have been recognized by Dronen et al., 2012, on the basis of relative length of the caeca and the position of the genital pore. Genus Mesocoelium conforms all the morphological aspects in *M. sociale*, as is evident from the present work. *M. sociale* Odhner in 1911, the type species of the genus is characterized by spinose body, shape and size of body, ratio of suckers, moderately long intestinal caeca, symmetrical position of testis, genital pore bifurcal, condensed and profusely fused vitellaria. The shape and size of the body, size of esophagus, caecal length, arrangement of gonads, position of genital pore, extension of vitellaria greatly vary due to improper fixation of worms and coverslip pressure plays vital role in positioning of the organelles and without proper relaxation of worms, dehydration with alcohol also causes disorientation of internal structures. The placement of genital pore in reference to the caecal bifurcation and midline of body is a reliable character for distinguishing the species of Mesocoelium (Pojmanska, 2008, Dronen et al., 2012, Calhoun and Norman, 2012). Uterine coiling has also been used to distinguish the species (Rao, 1989, Kumari & Verma, 1992). We have noticed that the younger adults have lesser number of eggs. It was also remarkable to note that fully mature worms, kept in cavity blocks containing water, start egg laying. Empty uterine coils or less number of eggs (Fig. 2, 6 &8) is thus quite common. Number of eggs, therefore, cannot be taken as a criterion of species establishment. M. varunae Baugh (1956) has close resemblance with M. sociale, except testis being smaller than ventral sucker and non- confluent vitellaria. Both the characters are variable, as is evident from the present collection (Plate I: Fig 3 & 6 and Fig. 6, 7 & 8). M. varunae is, therefore, regarded synonym of M. sociale. M. burdwanense Mukherji (1967), from the gut of Calotis versicolor Daudin, 1803 in West Bengal is characterized by

CLUSTAL W 2.1 multiple sequence alignment

VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	CGGGCAGAAATAACAAGGATCCCCCAGTAACGGCGAGTGAACAGGGAAAA CGGCGAGTGAACAGGGAAAA TAACGGCGAGTGAACAGGGAAAA *******************	50 20 23
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GCCCAGCACCGAAGCCTGTGGCCATTTGGTTACTAGGCAATGTGGTGTTT GCCCAGCACCGAAGCCTGTGGCCATTTGGTTACTAGGCAATGTGGTGTTT GCCCAGCACCGAAGCCTGTGGCCATTTGGTT-CTAGGCAATGTGGTGTTT ******	100 70 72
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	AGGTCGTTCCGCAGATGCTCTGCTCCACCCTAAGTCCATCAATGAGTACG AGGTCGTTCCGCAGATGCTCTGCTC	150 120 122
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GTAGTATGGACATGGCCCATAGAGGGTGAAAGGCCCGTGGGGGTGGAGAT GTAGTATGGACATGGCCCATAGAGGGTGAAAGGCCCGTGGGGGTGGAGAT GTAGTATGGACATGGCCCACAGAGGGTGAAAGGCCCGTGGGGGTGGAGAC ******	200 170 172
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TCGGCTGGTCAGAGTGTCTCTGGGTAGACCTTGGAGTCGGGTTGTTTGT	250 220 222
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	AATGCAGCCCAAAGTGGGTGGTAAACTCCATCCAAGGCTAAATACTTGCA AATGCAGCCCAAAGTGGGTGGTAAACTCCATCCAAGGCTAAATACTTGCA AATGCAGCCCAAAGTGGGTGGTAAACTCCATCCAAGGCTAAATACTTGCA ************************************	300 270 272
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	CGAGTCCGATAGCGAACAAGTACCGTGAGGGAAAGTTGAAAAGTACTCTG CGAGTCCGATAGCGAACAAGTACCGTGAGGGAAAGTTGAAAAGTACTTTG CGAGTCCGATAGCGAACAAGTACCGTGAGGGAAAGTTGAAAAGTACTTTG **********************************	350 320 322
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	AAGAGATAAGAGTGCGTGAAACCGCTCAGAGGTAAACGGGTGGAGT AAGAGAGAGAGTAAACAGTGCGTGAAACCGCTCAGAGGTAAACGGGTGGAGT AAGAGAGAGTAAACAGTGCGTGAAACCGCTCAGAGGTAAACGGGTGGAGT *****	357 370 372
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GT TGAACTGCAAGCTATGAGAATTCAGCTGATGAGTGTGATTTGAGCTTGGT TGAACTGCAAGCTATGAGAATTCAGCTGATGAGTGTGATTTGGGCTTGGT **	359 420 422
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TAAATTCTCGGG CAAATTGGTGAACTCCGGGGTCTGTGTAGTAGCAGGTCTCTACCCTCGGG CAAATTGGTGAACTCCGGGGTCTGTGTAGTAGCAGGTCTCTGCCCTCGGG *****	371 470 472
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TAGTATATGGAGATGCCCCCCGGTTGTTT-TT TGGAGATGCGCCGATACACTGGTCAAGTGTTGTGCGCCCTCGGTTGTTT-TT TGGGGATGCGCCGATACACTGGTCAAGTGTTGTGCGCCCTCGGTTGTTTGT	376 519 522
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	CGGCCTACTCGTCAGTGCACTTTCTCAGAGTGGTCACCACGACCGGCACC CGGCCTACTCGTCAGTGCACTTTCTCAGAGTGGTCACCACGACCGGCACC	569 572
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GCTGTCTGGTTGCTATGGTTAAACCGGTTTTGCATTGCA	619 622
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GCTTGATCGGGATGGCAGGTAGCTCGTTGACTTGCTGGTAGCTTGCTACT GCTTGATCGGGATGGCAGGTAGCTCGTTGACTTGCTTGTGGCTTGCTGCA	669 672

VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GGCGTCGGTTTTCGAGTGTAATCAGCTGACCTTAGTGACTCTGTGCAGTG GGCGTCGGTTTTCGAGTGTAATCAGCTGACCTTAGTGACTCTGTGCAGTG	719 722
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TGTCGGAGACGGCGGCTTGAGGTGTGTGCGTGCTTCATGTTCTGTTGACC TGTCGGAGACGGCGGCTTGAGGTGTGTGCGTGCTCCCTGTTCTGCTGACC	769 772
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TATCCGGGTTTGGTTGTTTTGTTGCCTGTTCAAGCAGGCCTTATAATGGC TATCCGGGTTTGGTTGTTTGTTGCTTGTTCAAGCAGGCCTTATGATGGC	819 822
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TCGGATTTGTTCGGCGGGGGGGGGGGGGGGGGGGGGCACTAATCCCAGGGCCA TCGGATTTGTTCGGTAGGGGGGGGGG	869 872
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	ATAGTCAGTGGTGTAGTGGTAGACTTTCCACCCGACCCG	919 922
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GGACCAAGGAGAGTAACATGTGCGCGAGTCATTGGGCGTTACGAAACCCA GGACCAAGGAGAGTAACATGTACGCGAGTCATTGGGCGTTACGAAACCCA	969 972
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	AAGGCGCAGTGAAAGTAAAGGTTTGACTCGTTCAGACTGAGGTGAGATCC AAGGCGCAGTGAAAGTAAAGGTTTGACTCGTTCAGACTGAGGTGAGATCT	1019 1022
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	TGTCGTTTCTTACGCGTGGTACCGCCAAGCATCGAGCGGCAGGCGCATCA TGTCGTTTCTTACGCGTGGTACCACCAAGCATCGAGCGGCAGGCGCATCA	1069 1072
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	CCGGCCCGTCCCATGACAGTTGTTTTCGGGCAGTTTTCGGTCGG	1119 1122
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GCATGAGCGTACATGTTGAGACCCGAAAGATGGTGAACTATGCTTGCGCA GCATGAGCGTACATGTTGAGACCCGAAAGATGGTGAACTATGCTTGCGCA	1169 1172
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	GGTTGAAGCCAGAGGAAACTCTGGTGGAGGACCGCAGCGATTCTGACGTG GGTTGAAGCCAGAGGAAACTCTGGTGGAGGACCGCAGCGATTCTGACGTG	1219 1222
VI95A gi 18034385 gb AF433677.1 AF43 gi 31662352 gb AY222277.1	CAAATCGATCGTCAAACGTGAGTATAGGGGGCG 1251 CAAATCGATCGTCAAACGTGAGTATAGGGGCGGAAAG 1258	

extension of intestinal caeca in pre-acetabular region. A review of literature shows that in all the species of Mesocoelium, except M. burdwanense, the intestinal caeca extend far beyond the ventral sucker. M. burdwanense cannot be placed under the genus Mesocoelium. In the rest of the Mesocoelium species, the extension of vitellaria is up to middle or hind region of body. We, therefore, doubt inclusion of this species under the genus Mesocoelium. The accurate placement is possible only when fresh collection is available from the type host and locality. M. thapari Gupta and Jahan (1976) was considered a junior synonym of *M. sociale* by Agrawal and Pandey (1980) to which we also agree. M. mithilae Kanth and Srivastava (1989) is also established on variable characters like ratio of suckers, unequal length of intestinal caeca, oblique testes, prebifurcal & post-bifurcal genital pore, distribution of vitellaria, large gonadal size and extension of uterus (observed in present colletion) Hence we consider M. mithilae as synonym of M. sociale. Description of M. melanostictii Rao (1989) and M. asymmetrovitellarius Kumari and Verma (1992) are based on a single specimen. M. melanostictii is also characterized by spinose body and variable characters (observed in present study, Figs 3) like ratio of suckers, extension of intestinal caeca in posterior half of body, symmetrical testes and distribution of vitellaria from oral sucker up to caecal ends. In our opinion, outer surface of improperly flattened worms give uneven appearance and when mounted under a coverslip could look like spines. Presence of spines could only be confirmed when additional specimens are available from the type locality for study. M. melanostictii is also considered a synonym of the type species. Regarding M. asymmetrovitellarius, we would like to mention that asymmetrical vitellaria is abnormal development of organ and not a specific character, and therefore the said species is none but the type species, having developed vitellaria on one side only. The appended table 3 shows variably measurements, host and locality of various parasites recorded so far in India under the type genus of the family.

Fischthal & Kuntz (1965) have stated that variation in Mesocoelium sp. is probably due to variation in environmental conditions in distantly related geographical areas and hosts. Morphological variability of worms may be due to wide range of host specificity, community richness on any single host species. Indian isolate M. sociale chiefly differs from M.sp1 & M.sp2 in terms of sequence length, composition of nucleotide bases and showed marked genetic variability. Though both species (M.sp1 & M.sp2) are forming clade but it is not significantly supported. Besides this, these two species are also different at most of the nucleotide positions as shown in Table 4. Indian species is more distantly related with other two species in terms of evolutionary divergence and dissimilarity of nucleotide sequences per site. Such pattern can be expected due to high gene flow and biogeographically barriers and ultimately leading towards diversification and speciation of parasites. We could not explore the morphology of both allopatric species because they are not identified.

Conclusions

We concluded that these species described so far in India are none but *M. sociale* except *M. burdwanensis*. We also doubt inclusion of *M. burdwanense* Mukherji, 1968 under the genus *Mesocoelium* due to extension of intestinal caeca far beyond the ventral sucker. Our molecular study also shows that *M.sociale* is more distantly related with other two allopatric forms in various molecular aspects.

Acknowledgements

Financial assistance to S. Ray under Rajeev Gandhi National Fellowship of UGC: F-1-17.1/2011-12/ RGNF-SC-UTT-2050/ (SA-III), is acknowledged. Facilities developed under UGC-SAP (DRS-I & II), DST- PURSE Department of Zoology, University of Lucknow, Lucknow were utilized for the present work.

References

- Agrawal N, Pandey K C (1980) On the validity of *Ganeo lucknowensis* Gupta and Jahan, 1976 and *Mesocoelium thapari* Gupta and Jahan, 1976, Ind Biol Jour, 2: 85-88.
- Baugh SC (1956) Contributions to our knowledge of digenetic trematodes I. Proceedings of the National Academy of Sciences, India, 26: 421–422.
- Calhoun DM, Dronen NO (2012) A reevaluation of specimens of *Mesocoelium monas* (Platyhelminthes: Digenea: Mesocoeliidae) from the Natural History Museum, UK and the United States National Parasite Collection, USA, Zootaxa 3589:1-29.
- Dronen ON, Calhoun MD, Simcik RS (2012) Mesocoelium Odhner, 1901 (Digenea: Mesocoelidae) revisited; a revision of the family and re-evaluation of species composition in the genus Zootaxa, 3589: 1-29.
- Fischthal JH, Kuntz RE (1965) Digenetic trematodes of fishes from North Borneo (Malaysia) Helminthological Society of Washington, 32: 63-71.
- Gupta V, Jhan A (1976) On two new trematode parasites of parasites of amphibian from Lucknow. Indian Jour. Helminth XXVIII: 66-72.
- Kanth LK Srivastava LP (1989) A new species of Mesocoelium, odhner, 1910 (Digenea: Brachycoeliidae) from the intestine of Heteropneustes fossilis (Bloch), Ind Jour Parasitol, 13: 255-258.
- Kumari M, Verma, UP (1992) A new trematode *Mesocoelium asymmetrovitellarius* from the intestine of *Bufo melanostictus* from Sonepur (Saran), *Ind. Jour. Helminth.* 44: 143–145.
- Mukherjee RP (1967) A new species of trematode of the genus *Mesocoelium* Odhner (1911) from *Calotes*

versicolor, Ind Jour Helminth, 19: 188–191.

- Odhner (1911) Zum naturlichen System der digenen Trematoden. II Zool Anz, 37: 237-253.
- Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ (2003) Phylogeny and classification of the digenea (Platyhelminthes: Trematoda), Int Jour Parasitol, 33: 733-755.
- Pojmanska, T (2008) Family Mesocoeliidae Dollfus, 1929 In Keys to the Trematoda Vol. 3. Bray, R. A., Gibson D I & Jones A (eds.). CABI Publishing and The Natural History Museum, London, UK, 261–263.
- Rao, R (1989) A new species of the genus *Mesocoelium melanostictii* sp. nov. from India, Ind Jour Helminth, 41:42–45.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods. Mol. Bio.and evol, 28: 2731-2739.
- Takach, VV, Pawlowski, J, Mariaux, J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsr DNA sequences. *Int.J.Parasitol*, 30: 83-93.