Floristic Diversity and Conservation Assessment of Important Species in Baramati – A Rain-shadow Area

Rani Bhagat, V. B. Shimpale and R. B. Deshmukh*
Anantarao Pawar College, Pirangut, Tal-Mulshi, Dist-Pune Pin-413115, Maharashtra, India.
*The New College, Kolhapur 416 012, Maharashtra, India.
Shardabai Pawar Mahila Mahavidyalaya, Shardanager Baramati, Dist. Pune 413115 Maharashtra, India.
E-mail : rb_botany@rediffmail.com

Abstract: The paper presents the Diversity, Taxonomic Status & Distribution of different taxa found in Baramati tehsil of Pune district in Maharashtra. In addition, it also provides information on conservation requirement of rare species occurring in area under study. The flora is analyzed statistically to compare the previous floristic studies. The consistent extensive and intensive survey for more than six years enlist total of 938 species, 14 subspecies and 42 varieties of angiosperms (including cultivated species) belonging to 577 genera and 136 families. Out of 108 families are of dicotyledons and 28 families are of monocotyledons are present in the region. Despite being arid vegetation, five members of pteridophytes were found to be growing in the region. Flora includes 6 Low Risk (LR) and 11 endemic species of angiosperms. During this investigation one genera and one species is added to the flora of Maharashtra State, while one new speceis is also described from the region which are under serious threat and requires future conservation measures.

Key words: Floristic, distinctiveness, conservation, Baramati.

Introduction
Baramati is constituent part of Pune District of Maharashtra State with 117 villages. It has total geographical area of 1382 sq. km. located in Pune district of Maharashtra State. It lies between 18°3’ -18° 12’ N latitude and 74° 13’-74° 40’ E longitude. The average altitude in the area is about 538 m above mean sea level. River Nira flows West-East as a southern boundary and Karha towards North West-South East.

Climate of Baramati is designated as the ‘extremely hot’ and the vegetation is semi-arid type and is well reflected in vegetation (Champion and Seth, 1968). The soil is mainly of basaltic origin. It has a distinct climate characterized by hot & dry summer (April-June), moist & hot monsoon (July-mid September) and almost dry winter (November-mid February). The maximum temperature may reach up to 40°C, while minimum goes down to 5°C. The mean daily temperature is above 22°C throughout year. The annual rainfall is as low as 37-95 mm and is confined to Southwest monsoon. The area has got one Wildlife Sanctuary known as Mayureshwar Wildlife Sanctuary which is well represented in Baramati region with exclusive wild flora mainly due to rainshadow effect of monsoon. Due to low rainfall the plants mostly belongs to xerophytes. Important species reported in study area includes- Corbichonia decumbens, Sporobolus spicatus-

Plants are universally recognized as a vital part of the world's biodiversity and an essential natural heritage for the planet. Thousands of wild plants have great economic and cultural significance, providing food, medicine, fuel, clothing and shelter for humans across the globe. Plants also play a key role in maintaining the Earth's environment (CBD). As per the International Union for Conservation of Nature (IUCN), many species are facing tremendous pressure and are on the verge of extinction in the whole world.

The five most important drivers of plant extinction are: (1) habitat loss and fragmentation, (2) introduction of exotic species, (3) climate change, (4) overexploitation and (5) pollution. For conservation plans to be effective, four essential steps are needed to maintain viable plant populations in the long term. These include assessment of the biological status of a species, diagnosis of the causes of decline, prescription of management strategies that will counter balance the decline, and implementation of management practices and further monitoring. (Martin Hermy et al. 2014)

Conservation efforts focus on measuring species diversity and distribution, assessing biodiversity threats, and managing habitats to maintain that diversity. (Krupnick, G.A. and Kress, J. 2003). To maintain and restore viable populations of all indigenous species across their natural range and maintain their genetic diversity is indispensable.

While going through the changed magnitude of study region, it was found that the place, from where we have reported the two important species i.e Eriocaulon baramaticum from family Eriocaulaceae, a new species record (Shimple et al., 2009) and a type locality of said species and Dipcadi saxorum (Shimple et al., 2008) belonging to family Liliaceae, a critically endangered species which was reported for the first time after type locality i.e. canary caves, Mumbai from village Waghalwadi. The area reporting these species is now highly disturbed and species are facing a serious problem of extinction. This is due to the anthropogenic pressure as well as the area of occurrence belongs to the local field owners and they sold it to farm development projects.

There is a pressing need for developing novel techniques using ground-trued remote sensing to quantify changes in the condition of key habitats (Thompson et al., 2005), and for extending promising meta-analytical approaches for using existing data on population and habitat trends (Loh et al. 2005). There is a considerable need for local field studies quantifying the impacts on human wellbeing of changes in the size or composition of populations and habitats (A. Balmford and William Bond. 2005). Ex-situ conservation and its restoration is the urgent need of time for these two important species. Further systematic monitoring of habitats and population for these two species are necessary.

Material and Methods

The present work on Floristic account of Baramati Tahsil involves intensive and extensive field work. The work was carried out for five years. Since the floristic inventory of district is not available, data available in the form of herbarium was searched in local & regional herbariums. The checklist of plants of the region is prepared by consulting the different herbaria viz., Botanical Survey of India Western Circle (BSI); Blatter Herbarium (BLAT), Mumbai; Agharkar Herbarium (AHMA), Pune and herbarium at Shivaji University, Kolhapur. During the field survey wide range of habitats were visited frequently in all seasons especially during monsoon. All possible localities were traced and various habitats were carefully explored. Attempts were made to even to survey microhabitats in the region such as riversides, hill ranges, marshy places, small streams, agricultural lands, ditches etc. Special attention was paid to collect plants from different areas and as far as possible; all the localities have been covered during all seasons. Three to four specimens of each species were collected. While collecting the specimens, field notes such as habit, habitat, flower colour, abundance, distribution, phenology and local names were recorded and field number was given to each specimen.

The methodology adopted for herbarium preparation is as follows:

a) Plants were collected in plastic bags.

b) The collected specimens were individually pressed in between blotting papers or news papers. This helps to remove the moisture content and to retain the morphological features.

c) Small branches with flower and/or with fruits were collected in case of trees, shrubs and tall herbs.

d) In case of small herbs and grasses, the entire plants with flowers and/or fruit including the underground portion were collected.

e) Uniform pressure was applied through field press to develop moisture-free good specimens.

f) The blotting papers were changed regularly once in a day to avoid fungal or insect attack. A solution of Mercuric Chloride (HgCl₂; 1%) was used for poisoning of the specimens as per standard methods.

g) The well-pressed specimens were mounted on the herbarium sheets using an adhesive (Fevicol) and stitched with thread. Botanical name, local name, morphology and
field note were entered on each herbarium sheet from field
notebook with respective field number.

h) The tag with field number was pasted on herbarium
sheet.

Results & Discussion

Efforts have been made to understand the changes in
floristic diversity due to various impact factors and to make
a comprehensive study of the area. During the earlier
works, Fabaceae was considered as the dominant family
but critical studies revels that Poaceae is the dominant
family of the region with 97 species. This may be due to
occurrence of grasslands and wasteland in most of the area.
The flora is composed of more than 100 species of weeds,
of which some are aggressive. 56 species of medicinal
importance were also noted from the area. The dominant
and invasive species in study area – Aristida redacta Stapf,
Boerhavia erecta L., Cassia tora L., Cassia uniflora Mill.,
Cynodon dactylon (L.) Pers., Digitaria ciliaris (Retz.) Koel.,
Heteropogon contortus (L.) Beauv., Leucas longifolia Benth.,
Parthenium hysterophorus L., Prosopis cineraria (L.) Druce.
Majority of the forest areas in the region being monocultures of
Acacia torta, Azadirachta indica Juss. and Gliricidia sepium
(Jacq.) Kunth ex Steud. species. In spite of xeric condition five Pteridophytes viz.
Actinopteris dichotoma, Adiantum lunulatum, Marsilea
quadrifolia, Ophioglossum lucitani and Pteris aquilina
were found in the wild region. Absence of the epiphytic
flora, except the cultivated few is distinctive feature of the
region.

The floristic and ecological survey since enlisted total of
938 species 14 subspecies and 42 varieties (including
cultivated) belonging to 577 genera and 136 families of
flowering plants for the taluka (Graph-1) The observation
on percent increase in flora with comparison to earlier
work (Deokule, 1997) in given in (Graph-2). Ten dominant
genera and species are mentioned in Table-1. During this
work two species viz. Corbichonia decumbens (Forssk.)
Jack ex. Excell. (Molluginaceae) and Sporobolus spicatus
(Vahl) Kunth (Poaceae) have been recorded for the first
time to the Maharashtra State (Bhagat et al., 2008) and one
new species of genus Eriocaulon (Shimpale et al., 2009)
has been described from the study area. Floristic Survey
concludes the change in floristic composition from dry-
xeric to semi-xeric condition due to more water loving
plants and changed agro climatic practices like irrigation,
fertilization and cultivated species.

Intensive surveys have resulted in addition of 23 families,
166 genera, 414 species, 8 subspecies, 29 varieties of
angiosperms and 2 pteridophytes to the earlier works.
Besides 11 endemic plants, one critically endangered
species, 6 Low Risk plants, two new records to
Maharashtra, one new species to science and 86 species
belonging to family Poaceae gives the uniqueness of flora
and justifies the need of study.

Further recent study with respect to new species and
critically endangered species are found at very low
distribution and with limited population. These are need to
be systematically explored in other similar habitats and
conservation should be done.

Acknowledgements

Authors are thankful to Professor S. R. Yadav, Dept. of
Botany, Shivaji University, Kolhapur. Authors are
thankful to Sakal Papers Ltd. for financial assistance for project and Pawar Public Charitable Trust, Mumbai for financial assistance for publication of book.

References

Champion H. G., Seth, S. K. (1968): A Revised Survey of the Forest Types of India, Govt. of India Press, Delhi

Loh, J., Green, R.E., Ricketts, T., Lamoreux, J., Jenkins, M., Kapos, V. et al. (2005): The Living Planet Index: using species population time series to track trends in biodiversity. Phil. Trans. R. Soc. Lond. B.

Martin Hermy, Olivier Honnay; Hans Jacquemyn, Rein Brys '2014) Conservation of Plants Wiley online Library

