Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26 Online available on :

www.ajesjournal.com, ISSSN : 0971-5444

Simulation and implementation of Hash Algorithm-3 (SHA-3) on FPGA

Yaghoub Mirchi and Siavash Amin Nejad

Rasht Branch, Faculty of science and Research

Department of Electronics, Islamic Azad University, Rasht Branch, Iran- 4147654919
Email : peyman.mirchi@gmail.com

Received: March 5, 2017; Revised: June 16, 2017; Accepted: June 20, 2017.

Abstract: Secure hash functions refer to key component of many applications, such as digital signature projects or
authentication systems. Many of these applications are used in cost-sensitive markets, and thus implementation of
such components with low budget is very important. In 2012, the National Institute of Technology (NIST), aftera 5-
year long-term competition selected Keccak algorithm as a Hash function that must be standardized as SHA-3.
During and after this competition, variety of Keccak implementations have been proposed and evaluated for
hardware platforms. However, few results were released for non-standard implementations. Since to date SHA-3
algorithm has not become operational and presented only in few workshops, in this research firstly what is this
algorithm and how it works are considered and then this algorithm is examined using software Matlab. After
examining software via Quartus software, the program has been examined in hardware via Verilog language and
finally implemented on EP2C20F484C7N board and the results have been compared with the real value which has

been presented via Keccak.

Keywords- Keecak, SHA-3 algorithm, Software Review, hardware review, implementation.

Introduction

Hash function which is called Hash, Hash Code, Digest,
and Message. Digest is a primary function which converts
the data of arbitrary length to fixed-length data. Hash can
be considered as digital fingerprint of a date. With this
method, it can obtain fixed-length string of a data which is
encrypted with mathematical methods as "one-sided"
(Bertoni ef al., 2011). Discovering the major string from
hash string (inverse operation) is almost impossible.
Another point is that each data creates a distinctive hashed
string. These properties convert hashing to an ideal and
efficient method for storing passwords in programs. Even
if a hacker (Hacker) can penetrate into the system and
database and gain a part of the information (including
hashed passwords), passwords cannot be retrieved from
them (Chang et al., 2012). Hash algorithms are used to
compress files and create a small data which is signature. In
previous standards such as SHA-1 and SHA-2, algorithm
weaknesses existed which brought down their degree of
security. Hash Algorithm-3 (SHA-3) is the newest hash
algorithm which was standardized to increase security of
clectronic signature after long competition between
experts in 2014. In this system, if a bit of data file changes,
the signature changes and it cannot produce a similar
signature with changes in file. Coding is used to create
security in data transmission and/or electronic signature to
ensure the accuracy of the information (Bertoni ef al.,
2007).In 2014, in International Conference on Electronics,
it was stated that a high speed hardware which had been
selected for keccak has improved as a standard hash
function named SHA-3 and its function was evaluated via
various FPGA platforms against SHA-1 and SHA-2
circuits. The results showed that KECCAK is suitable for

17

high speed implementation, but implementing it on new
FPGA devices is difficult. SHA-3 competition was ended
at the late 2012 by introducing KECCAK as a winner
algorithm. Sravani and Pallavi (2015) gained proper
results by combining three blocks of algorithm RHO, PI,
CHI and converting to a block. This caused storing 16% in
the entire program and reducing number of program
courses and increase of the highest operational frequency
(Ethan Heilman, 2012). Hash function has been suggested
as a cryptographer of a wide range of RFID protocols.
Since KECCAK was selected by NIST as the winner of
SHA-3 competition in 2012, this question was raised that
to which extent we can resolve KECCAK limitations to
reduce cost in RFID. PETER PESSL and MICHAEL
HUTTER by presenting a hardware implementation of
KECCAK which aims to lower power enabled to resolve
KECCAK limitations. Their project is smaller than the
smallest SHA-1 and SHA-2 implementation. Athanasiou
et al. (2014) proposed architecture on Xilinx vitrex-5,
vitrex-6, vitrex-7 comparing existing FGAP
implementation gained considerable improvements.
Specifically, better operational power was gained for
Vitrex-5 architecture.

A large body of works has been made on FPGA
Implementations of SHA-3 Candidates; most of previous
implementations are optimized for high power (output)
and few implementations exist for compressed plans. The
early results on compressed BLAKE implementations use
the same method with proposed plan in this article, in
which RAM block has been used, thus the results are not
comparable. Here, all the algorithms have been distributed
using RAM (Bertoni et al., 2014). Thus, all the required
references are considered in counting pieces (Table 1).

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

Table-1 Results from implementation for Virtex-5 FPGAs.

Algorithm Slices BRAM MHz MBit's MBiv/s/Slice
Grostl 368 0 305 975 2.64
Keccak 393 0 159 864 2.19
BLAKE 251 0 211 477 1.90
Skein 519 0 299 262 0.50

JH 193 0 283 23 0.11

In this regards, the present research states new results in
this contexts. They reported the results for all final
candidates of SHA-3 for Vitex-6 and Spartan-6 FPGAs.
They implemented all candidates for two 256 and 512-bit
digests. Some of their plans differ from the plans presented
in the present research, e.g. new Keccak plan is so faster,
while other plans gain much similar function (output)(
Merkle, 1987).

Overview of the SHA-3 and its history

National Institute of Standards and Technology is working
on the process of selecting a latent hash algorithm through
a public competition. New hash algorithm entitled "SHA-
3" will be mentioned and hash SHA-2 algorithms which
have been defined in secure hash standard, FIPS 180-3,
will be completed. The selected algorithm to be suitable for
use by U.S. government as well as private sector at the end
of competition and available to everyone worldwide has
been the main aim. Since then, this competition as referred
to SHA-3 competition is mentioned in all documents
(Bertonief al., 2011). The competition is NIST response to
recent advances in the discovery of cryptanalysis of hash
algorithm, such as standard SHA-1 hash algorithm. A rush
by Hongobo Yu and Yiqun Lisa Yin which was developed
by other people has seriously discussed on the safety in the
use of SHA-1 in digital signatures and other applications
that require collision resistance. While SHA-2 family
provides an essential alternative from hash algorithms;
NIST expects from selected SHA-3 to provide the security
which is as well as SHA-2 algorithms with considerable
improvement in the period or extra features (NIST, CSD).
In preparation for the competition SHA-3, NIST held
workshops on 31 October to I November 2005 and 24 and
25 August 2006 to discuss about the status of hash
algorithm and create a path towards standard development
of a new hash algorithm. As a result, NIST established a
public competition similar to what used to select the
advanced standard encryption (ASE) (NIST Releases
SHA-3). NIST released the selection requirements and
SHA-3 algorithm evaluation standards in January 2007 for
public comment in federal registry notice; these evaluation
standards were updated based on public feedback and put
in a second ad of the Federal Registration which was
released on 2 November 2007, called a new hash algorithm
and specified start of competition (NIST Cryptographic
Algorithm Validation Program (CAVP)). Candidate
requests (presentations) have been in the 31 October 2008
deadline, at which NIST received delegate (assignment)
package, presented 21 candidate algorithms for ASE
competition in 1998. Among 64 requests (presentations),

18

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

NIST on 10 December 2008 announced accepting 51
candidates for the first round as candidates met the
minimum acceptance standards, indicating the start of the
first round of SHA-3 competition. The first round of
candidates packages were put online in
www.nist.gov/hash-competition for public visit (Bertoni et
al, 2012). NIST held the first SHA-3 Candidate
Conference on 25- 28 February 2009 in Leuven, Belgium,
which the presenters of the accepted candidates at first
round were invited to present their algorithms. NIST
discussed on a program to reduce the first round candidates
to the more controllable numbers for future studies till
summer 2009 and started the second round competition.
Since then, NIST was used more than ever. As a result of
studies on first round candidates, NIST announced
selection of 14 algorithms in 24 July 2009 as the second
round candidate so as to move towards the second round
competition. In following, a time of major events on SHA-
3 competition in several courses:

-1/11/2005: latent workshops, NIST, Gaithersburg, MD.
-25/8/2006 : second latent hash workshop, UCSB, CA.

-23/1/2007: Federal registry notice-announcement of
new hash algorithm to review federal information
processing standard 180-2, secure hash standard.

-11/2/2007: federal registry notice-the announcement
for needing to candidate algorithms delegate for latent
hash algorithm SHA-3.

31/10/2008~ The latest deadline for presentation SHA-
3.

-1/11/2008: first round of competition.

-10/12/2008: the first round candidates were announced.
Public comment on first round candidates was started.

-28/2/2009: the first conference on candidate SHA-3,
KU Leuven, Belgium.

- 24/7/2009the first round was ended and the second
round was started. The second round candidate was
announced. The public comment round on second round
candidate was started.

SHA-3 hash function

SHA-3 hash algorithm which is recognized as Keccak is a
latent hash function which was projected by Bertogne et al.
this algorithm is based on foam construction
(absorption/pressure) which is a group of algorithms with
limited internal status which takes a input bit stream of any
length and output bit stream of any desired length. This
algorithm receives a 3D matrix which is called the matrix
of size (length Word 5: 5) as input. With regard to the
desired output, this algorithm uses two parameters for
sponge construction. The two input parameters include
bitrate (bit rate) r and ¢ capacity. During absorption stage
(major hash calculation), the rate of bit transmission is the
primary status with the first input part XOR. The resultas a

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

transmission rate of new bit which forms a new status with
capacity of primary status matrix is used. This status is fed
in the main algorithm process. Then the new obtained
status is used as the new primary status and this process
continues for interactions. In following, during
compression stage, it is assumed that the output is half of
the capacity size, thus there are not further calculations.
Output widths of potential 224, 256, 384, 512 bits SHA-3
are produced with bit transmission rate of 576, 832, 1024,
1088, 1152 bits. Conversion stage (adsorption process) of
SHA-3 includes five separate functions, iterated for 24
times(24 bit length of word).these functions work on a
1600 bits status matrix, a, and explained in following. Lota
function uses a curve constant which is different for each
curve, but it can be calculated once more before hash

ﬂ%‘ﬂ?ﬁiﬁﬂsm SHA-3 architecture

To clarify the concept, the proposed SHA-3 architecture is
presented. In beginning, SHA-3 communication core has
been displayed.

SHA-3 communication hash core

The introduced SHA-3 communication hash core has been
displayed in Fig. 1. This core consists of the conversion
curve.

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

Theta:a[x][y][z] < alx][y][z]

+) alx- 10z (1)
y'=0
+) alx+1][y1[z-1]
Rho: a[x][¥](z] — alx]iy] [z » WI :
(2)
’ 0 ulf o | Xy . 202
witht:0 <t < 24 and (2 ;) (0) = (v) in GF(5)°
ort=-1lifx=y=0
Pi:a[x][y] « a[x'].with G) = (g ;)(;:) (3)
Chiza[x] — alx] + (alx + 1] + alx + 2] ‘)
(5)

lota:a « a + RC[i,]

Transformation
Round

Fig 1. Pipelined SHA-3 architecture.

As displayed via algorithm, a primary zero status is used
during the early iteration. Zero status is hold in REGs of the
zero status which includes simple counters. One
multiplexer of 2 to | exists next to REGs of zero status
which is responsible to realize feedback action when a
multi-block message is processed. In this state, hash output
of the status of current block is fed in VSX so as to become
the new input status of XOR. VSX modules are displayed
in Fig. 2. These modules include a 1152 bit XOR for
primary storing and five additional components which

19

each one is responsible to develop a suitable status at each
algorithm version. Then, a 5 to | multiplexer is used to pass
suitable status to the conversion curve which is based on
version selection. In contrast to current SHA-3/Keccak
architectures, version selection falls after primary XOR.
This selection of plan is made so as to implement this
modulus efficiently as a component in FPGA which results
in low expenses of routings and improvement in delay and
surface standards.

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

; y}

EC])

¥

1088 it

O A
& 010

)

“ A
'fn o1

-

g 1n B
& 100

foamn - anw

VSel

Fig. 2. Selection of VSX modulus and version.

Further, there is a counter after multiplexer. This counter
avoids VSX logic to increase the critical path which is
inside the conversion curve. However this counter imposes
an additional hour cycle inside each information block, its
effect on total operational power for large multi-block
messages can be little. SHA-3 core is controlled by control
unit which is realized using FSM. FSM includes 5 statues
which is called idle status; status SI for version selection
and primary XOR, statues S2 and S3 for major calculations
and statues S4 and S5 for calculating the last hash block.
Further, FSM includes a counter which counts to 48 which
is correspond to 24 two-stage communication conversion
curve iterations. Due to two-stage communication, the

proposed core can be fed with two input blocks during the
first and second cycles of operation hours. This makes
balance in doubling the required hour cycles for processing
ablock.

SHA-3 communication conversion curve

The proposed core conversion curve has been displayed in
Figure 3. As shown in this algorithm, this curve includes
five modules which realize tasks of five algorithms, i.e.
Theta. Rho. Pi. Chi and fota. In start of curve, 2 to 1
multiplexer exists for curve feedback.

Reset
<l_:)
In_State "
1600 -bit }

Enable

Out_State

Omxo

Round
Constant
Generator

Clock
! Round

Clock |Enable

Fig. 3. Round of SHA-3 pipelined conversion.

20

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

Suitable Circular constants that are used in lota function
are produced by circular constant productive. There are
three other project methods for this modulus: 1-production
in flight of Circular constants with an appropriate circuit
which performs linear feedback shift counting (LFSR); 2-
precalculation of 24 constants and use of 24 counters to
store them and a MUX tree to feed these values in fota; 3-
use of a circular middle memory which contains pre-
calculated constants and feeds the correspond value in each
iteration to Iota. We have developed and implemented
these alternatives in Xilinx Viretx-5 technology and
concluded that the most efficient alternative for
operational power has been the first method. To use
communication method, two counters are put in the curve.
The first counter is put between Pi and Chi so as to divide
the critical path two half. The second counter at the end of
curve is put before feedback branching. Thus, the critical
path which is produced due to feedback is almost cut at
half. Control signs are two communications counting of
public hour and reset (restore) and the signs which are fed
enable as inputs in core. In contrast, 2 to 1 multiplexer
selection symptom as well as circular fixed generator
control symptom is divided into the core control unit.

Results
Optimization using LUT samples

Fornewer Virtex-5 and FPGAs, the optimization of project
is possible with manual modeling of the primary LUT
geometric shapes. In the present work, we combined and
with multiplexer before . Direct modeling helps for
reduced count compared to the older results presented by
Jung et al. this idea works properly, because just 3 input bits
are required for each outputbit, works onone or zero bitin
each row and multiplexer selects between and calculation
or route-through. Thus, we can package calculation of four
output bits in two samples LUT6_2 with four input bits.
Multiplexer bit and bit with x=0 are assigned to a single
LUT6 2 sample which calculates . On the whole, we
require three LUT6_2 samples per row.

21

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

Combined settings

To measure our implementations, we used a systematic
method same as ATHENa framework. We combined our
project for d {25.2k /1 k [For each of settings, we used
Xilinx ISE 14.5 to combine our project with different
optimization settings. Then settings with the best post-
place and the common results at the second step of
optimization were used so as to increase the operational
power with strict timing restrictions. We explained
analysis by Keccak-f [1600]and Keccak-f [800] for
platforms with less restriction. For analysis of lightweight
species, we generalized analysis by Keccak-f'[400] and
added research on Keccak-/[200]. The best post-place and
the common results from architecture of the proposed
piece have been displayed in figures 4 and 5 which assume
alternative relations for a set of various parameters. The
recognition space for all Keccak structures under study,

Keccak-f[1600]. Keccak-f[800]: Keccak-f[400], Keccak-

/[200] are drawn on a logarithmic axis, indicating the

space in the pieces on the function specified as Mbit/s. each
proposed plan as well as the projects based on FPGA which
have been introduced previously in literature review are
specified separately. Further, we specify specific bounds of
surface-operational power ratio which is a common
standard to compare various projects in terms of their
return. We present operational power of projects in simple
and explicit values as shown intables 2 & 3.

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26 Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

Table - 2. Results of implementation for Keccak-f [1600] and Keccak-f [800]

Design Resource Performance Metnc

State Data path Capacity Rate BRAM/ Frequency Throughput [Mbit]
Variant structure (d) [Bit] (c) [Bit] () [Bit] Architecture Platform Slices DSP (f) [Mhz] (T) [Mbit/s] [s*slice]
KECCAK- f[1600] Shice 25 512 1088 This paper Virtex-5 140 oo 200 81 0358
50 512 1088 This paper Virtex-5 161 0o 186 151 093

100 512 1088 This paper Virtex-5 195 o 177 287 147

200 512 1088 This paper Virtex-5 272 0o 166 539 198

200 512 1088 [12]" Virtex-5 393 o 159 864 220

200 512 1088 [21] Virex-5 344 o - 870 253

400 512 1088 This paper Virex-5 455 0o 158 1024 2325

800 512 1088 Thispaper Virex-5 854 0/ 151 1959 229

Lane 64 512 1088 9] Virex-6 144 00 250 122 089
64 512 1088 [11) Vinex-5 151 30 520 501 332

64 512 1088 [10] Vinex-5 159 1/0 248 71 045

64 512 1088 [10] Virtex-5 275 0o 260 17 043

Parallel 1600 512 1088 This paper Viriex-5 1215 00 195 5054 416
1600 512 1088 [7] Virtex-5 1,338 1/0 248 11,252 841

1600 512 1088 [7] Virtex-5 1,369 o 297 13452 983

1600 512 1088 [8] Virex-5 1433 0o 205 8747 6.10

1600 512 1088 [6]' Vinex-5 2,326 (V201 306 3120 134
KECCAK-f[800] Slice 25 256 544 Thispaper Virex-5 120 0/0 27 9% 080
25 512 288 This paper Virtex-5 112 o 220 62 055

50 256 544 This paper Virex-5 146 o 186 158 1.08

50 512 288 This paper Virtex-5 138 o 168 105 076

100 256 544 This paper Virex-5 186 oo 163 312 168

100 512 288 Thispaper Vinex-5 168 o 162 205 122

200 256 544 Thispaper Vinex-5 267 oo 155 528 198

200 512 288 This paper Virtex-5 249 o 158 355 143

400 256 544 Thispaper Virex-5 428 o 165 1,120 262

400 512 288 Thispaper Virtex-5 416 oo 159 M7 172

800 256 544 This paper Vinex-5 591 o 205 2785 4.71

Parallel 800 512 288 This paper Vinex-5 524 o 209 1.880 3.59

22

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

Table - 3. Results from implementation for Keccak-f [400] and Keccak-f [200] on Virtex-5

Design Resource Performance Metric

State Data path Message Digest Capacity Rate BRAM/ Frequency Throughput' [Mbit]
Variant structure () [Bit] (n) [Bit] (c) [Bit] (r) [Bit] Slices DSP (f) [Mhz] (T) [Mbits] [s*slice]
Keccak-f[400] Slice 25 128 256 144 106 o0 191 57 0.54
25 128 128 272 108 o0 195 87 081

25 160 160 240 103 o 186 78 075

25 160 320 80 106 o 204 39 0.37

25 224 24 176 102 oo 186 64 063

25 256 256 144 106 o 180 54 051

50 128 256 144 1 o 188 113 1.02

50 128 128 272 134 oo 192 172 128

50 160 160 240 124 o 186 155 1.25

50 160 3% 80 106 o 21 81 0.76

50 224 224 176 122 o 195 134 1.10

50 256 256 144 115 o 184 110 0.96

100 128 256 144 165 o 167 201 .22

100 128 128 272 176 o 152 213 1.55

100 160 160 240 172 o 176 293 1.70

100 160 320 80 148 wo 175 135 091

100 224 24 176 160 oo 172 237 1.48

100 256 256 144 157 o 173 207 1.32

200 128 256 144 261 o 17 410 1.57

200 128 128 272 261 o 171 610 234

200 160 160 240 249 o 174 580 233

200 160 320 80 208 o 168 259 1.24

200 224 224 176 239 wo 163 450 1.88

200 256 256 144 241 0 177 424 1.76

Parallel 400 128 256 144 289 o0 236 1135 393
400 128 128 272 318 o 306 2194 6.9

400 160 160 240 304 o 304 2029 6.68

400 160 320 80 240 o 283 869 362

400 224 224 176 254 o 283 1558 6.13

400 256 256 144 262 o 277 1330 507

KECCAK- f[200] Shice 25 128 128 7 oo 191 62 0T
25 160 160 40 80 o 19 4 0.50

50 128 128 72 116 wo 175 113 097

50 160 160 40 103 wo 213 89 0.86

100 128 128 72 14 o 191 246 L7

100 160 160 40 137 o 188 157 114

Parallel 200 128 128 72 159 o 339 872 548
200 160 160 40 146 o 327 545 3173

Implementations with higher security

Implementations of projects Keccak-/[600] and Keccak-f
[800] are examined in this section. Firstly implementations
of the proposed Keccak-f[1600] project as well as another
existing project are discussed in literature review; then the
results from implementation of Keccak-/[800] project will
be examined with various capabilities. Anyone can see that
the projects with operational power of the architecture of
the cut at the proposed axis of Keccak-/[1600] are scaled
with increased d linearly. However, ratio of operational

23

power- appropriate level is not scaled with d (Fig. 4). This
effect is probable due to a balance in electrical energy
consumption which is due to 1600 bit Keccak large
memory and control logic which both have a source usage
which is less dependent on width of datapath d. thus,
projects with d = {200, 400, 800} .. almost same surface-
operational power return, because consumption of
electricity supply is a less prominent part in this project.
However, the return declines considerably for smaller
projects.

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

Resouwae Consumption [Shons)

| P

! KECGAK1000 c=512 pataliel
KECCAK1800 c=512 parallel (ours)
KECCAK1000 c=512 parallel with BRAM
KECCAK1800 c=512 shoe
KECCAK 1800 =512 shoe (ours)
KECCAK10800 ¢=512 lane
KECCAK1600 c=512 lane with BRAM
KECCAKB00 c=512 paraliel (ours)
KECCAKBO00 c=512 shoe (ours)
KECCAKB00 c=258 paralisl (ours)
KECCAKBO0 c=258 shoe (ours)

sl -3 el N]

LAvy

psmBMSce's)

10’

Throughput [MBiv's)

Fig. 4. Replacement Relationship of the operational power-level for different implementations
Keccak-t[1600] and Keccak-f [800].

Architecture of the cut at the presented axis works better
than the projects introduced in the past in terms of
exploitation from sources at the width of the same data
path, d=200. Our optimization type with d=25 is the
smallest project reported to date, event compared to the
projects which use BRAM. For instance, the results
reported in (Bertoni ef al., 2011) acts faster than our small
project, but it uses BRAM3, which adds a considerable
overhead which is not covered with the pieces. In left side
of figure 4, results from implementation of parallel Keccak
can be observed. Our parallel project refers to one of the
slowest parallel projects due to message absorption
overload. However, this project is smallest projects. For
Keccak-/[800] implementations, we generalized analysis
and put the projects with different capabilities. Capacity
and capability not just affect security of Keccak algorithm,
but also affects resource consumption, and thus the
efficiency of Architecture. The more security at project, the
implementation becomes smaller, but on the other hand

)

operational power diminishes. Both these effects are
caused by smaller rate. If the capacity increases, the rate
decreases and thus the function decrease. On the other
hand, if the rate decreases, the control logic decreases due
to smaller counters for absorption and compression stages.
Thus, the source consumption is less for high capacity type.

Lightimplementations

Light hash functions are used in RFID components and are
latent tools for the goals to set credit. Large status Keccak-/
[b]is abigbarrier inuse of it in these applications. Thus, we
examined our proposed architecture features for a variety
of Keccak-/ [400] and Keccak-/" [200]. which are the
lightweight versions of the winner SHA-3. Results from
projects Keccak-f[400] and Keccak-f[200] are same as the
implementations with further security in terms of
scalability, but in general they are smaller than
heavyweight types (Fig. 5).

10

3,

Resource Consumption [Skces)

-+— Better i

+—— Belter

T— i L

Ll 1

T T

KECCAK400 c=320 pasalil
KECCAKA00 ¢=256 paraliel
KECCAK400 c=224 paraliel
KECCAK400 c=160 paraiel
KECCAK400 c=128 paraliel
KECCAK400 ¢=320 slice
KECCAK400 c=256 siice
KECCAK400 c=224 slice
KECCAK400 ¢=160 slice
KECCAK400 c=128 slice
KECCAK200 c=160 pasaliel
KECCAK200 ¢=128 paraliel
KECCAK200 ¢=160 siice
KECCAK200 c=128 slice

=Ry LB 2 B

Ly AwO

0.5 MBaNSice's)
—==1.0 M3t Sice's)
-2 0 MB2ASice’s)

! BT

10’
10*

| BN

10°
Throughput [MBit/s]

10'

Fig. 5. level-operational power replacement for different implementations Keccak-f [400] and Keccak-t [200].

24

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

It seems that architecture of cut at the proposed axis is

scalable for lightweight implementations of Keccak
algorithm. Total operational power is determined via width
of datapath (d) and rate(r). Parameter (d) determines

number of clock cycles and affects Clock frequency.

However, it seems that changes in clock frequency have not
statistical velation for the versions with the same d-value,

because these changes due to different settings are greater
Jor Xilinx tool chain. Rate(r) determines number of
processed input bits at each hour cycle. it should consider
that we have focused on long hash messages for
evaluation, thus additional compression steps are required
Jforshorter messages for projects withr < n feature.

Serial port

Standard serial port refers to one of the most common
external communication of computers till last few years,
having the ability to connect various devices such as
modems, scanners, printers, etc., respectively. However,
due to the need for higher speeds in current use, other ports
are being replaced with this port. For example, parallel port
which can transmit 8 lines of communication
simultaneously and/or new serial ports (USB and USB2)
which have the ability to transmit super-fast information
are suitable alternatives to this port. However, use of this
port has not been just canceled, but also use of this port
outperforms other ports in some cases due to technical and
economic reasons. Practically, connecting to the serial port
is much difficult than parallel port. In most cases, a device
which connects to serial port requires converting the serial
transmission to parallel which this is made via UART.

UART board

UART is the abbreviated form of Univeral Asynchronous
Reciever Transmitter which means Comprehensive
asynchronous transmitter and receiver. UART implies
converting the bits received from serial port to the parallel
data. As known, data in serial port are received bits in a
row; further, as known, a bit has no meaning for computer
and Bytes are just meaningful. UART buffers input bytes
from serial port and transmits them for processing when
some of them reach to a byte.

Interface circuit

In large systems, UART is an auxiliary circuit to transmit
serial data. Checking major hash of system are periodic
states which retrieve and receive the words. The receiver
interface circuit has two major functions: 1- the first
provides a mechanism for the signal to have access to a new
word and make retrieve to avoid the received word at
multiple times; 2-the second provides a buffer space
between receiver and major space. There are three major
projects:

Conclusion

In this article, two-stage communication architecture of
new SHA-3 algorithm was introduced. A special attempt

has been made and several other design methods have been
examined to deduce efficient FPGA implementations in

25

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

terms of operational power and level/operational power
ratio which gained considerable improvements compared
to FPGA implementations. In this research, firstly SHA-3
algorithm has been implemented via software Matlab and
quartus and then the results of tests were observed on Ultra
board which all the responses have been found consistent
with major version in Keccak site.

References

Athanasiou, George S., Makkas, George-Paris.,
Theodoridis, G. (2014): High throughput pipelined FPGA
implementation of the new SHA-3 cryptographic hash
algorithm. 2014 6th International Symposium on
Communications, Control and Signal Processing
(ISCCSP). DOI: 10.1109/ISCCSP.2014.6877931.

Bertoni, G., Daemen, j., Peeters, M. and Van Assche, G.
(2007): “Sponge Functions,” ECRYPT Hash Workshop, 1-
22. http://sponge.noekeon.org/SpongeFunctions.pdf
Ethan Heilman to hash-forum@nist.gov, October 5, 2012,
Hash Forum.

Bertoni, G., Daemen, j., Peeters, M. and Van Assche, G.
(2011): “Keccak Specifications,” Submission to NIST
(Round 3), 2011. Federal Information Processing
Standards Publication 180-4, Secure Hash Standard
(SHS), Information Technology Laboratory, National
Institute of Standards and Technology,
http://csrc.nist.gov/groups/ST/hash/sha- 3/Round3/
submissions_rnd3.html.

Bertoni, G., Daemen, j., Peeters, M. and Van Assche, G.
(2012): Keccak implementation overview version 3.2,
2012. http://keccak.noekeon.org/Keccak-implementation-
3.2.pdf.

Bertoni, G., Daemen, j., Peeters, M. and Van Assche, G.
(2014): “SAKURA: a flexible coding for tree hashing.
ACNS 2014: Applied Cryptography and Network Security
pp 217-234. doi: 10.1007/978-3-319-07536-
5 14https://link.springer.com/conference/acns.

Chang, S.J., Perlner, R., Burr, W.E., Turan, M.S., Kelsey,
JM., Paul, S. and Bassham, L.E. (2012): Third-Round
Report of the SHA-3 Cryptographic Hash Algorithm
Competition 2007. National Institute of Standards and
Technology. U.S. Department of Commerce. 1-80.
http://dx.doi.org/10.6028/NIST.IR.7896.

Merkle, R.C. (1987): “A digital signature based on a
conventional encryption function,” Advances in
Cryptology -CRYPTO '87, A Conference on the Theory
Applications of Cryptographic Techniques, Santa Barbara,
California, USA, 369-378.

NIST Computer Security Division (CSD). "SHA-3
Standard: Permutation-Based Hash and Extendable-
Output Functions" (PDF). NIST (National Institute of
Standards and Technology). U.S. Department of
Commerce. 1-37.
http://dx.doi.org/10.6028/NIST.FIPS.202.

Asian J. Exp. Sci., Vol. 31, No. 2, 2017; 17-26

NIST Releases SHA-3 Cryptographic Hash Standard.
http://www.nist.gov/itl/csd/201508 sha3.cfm. Accessed:
2015-11-23.

NIST Cryptographic Algorithm Validation Program
(CAVP), http://csre.nist.gov/groups/STM/cavp/

Sravani, M.M. and Pallavi, C.H. (2015): Design of
Compact Implementation of SHA- 3(512) on FPGA.
International Research Journal of Engineering and
Technology (IRJET);. 02(02), 41-46.

26

Online available on :
www.ajesjournal.com, ISSSN : 0971-5444

