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Abstract : Robust QSAR models were developed using MLR, PLS and FFNN for a set of 29, 4-aminoquinoline
derivativesas Pf(K 1 strain) glutathionereductase (GR) inhibitors. Thestatistical valuesof all thedevel oped models
were analyzed and compared. The results obtained from MLR, PL S models were comparabl e to the FFNN model.
The results obtained from this study indicate that Dipole Moment X Component, VAMPLUMO and First Atom E-
Stateindex of 4-aminoquinoline derivatives plays an important role in determining the anti-malarial activity of the

said compounds.
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INTRODUCTION

Malariahasbeen the biggest health problem accounting for
1.5t0 2.7 million deathseach year. Thissituationisrapidly
worsening, mainly due to unavailability & effective drugs
and development of drug resistancetotheexisting first line
drugs (Smith, 1987 and Nosten, 1982 and Smith 1987) . It
has been observed anti-malarial 4-aminoquinolines, like
chloroquine, targetstheacidic food vacuol e of the parasites
and inhibits heme bio-mineralization. Since safe, effective
and affordable orally active therapies capable of
addressing the problem of resistance are stringently
needed, identification of new anti-malarial drug candidates
isan urgent priority (Singh, 2006). Thereisan urgent need
to evaluate the binding requirements of anti-malarial by
employing computational approach. One of the most
promising techniques to get insight into the structural
requirements is QSAR, which is a mathematical
relationship linking chemical structure and
pharmacological activity in a quantitative manner for any
given series of compounds. (Neaz, 2008). In view of this
we decided to develop predictive modelsusing MLR, PLS
and FFNN. The main objective of the investigation has
beento determine structural elements of 4-aminoquinoline
derivatives responsible for anti-malarial activity, which
canhelpinthedesign of novel GRinhibitors.

MATERIALAND METHODS

QSAR study was performed on a series of 29 4-
aminoquinoline derivatives. Structures and biological
activities of al compounds are given in table 1 (Friebolin
and Jannak 2008).

Preparation of input for QSAR studies

The molecular structureswere drawn and their geometries
were cleaned using standalone module of Discovery
Studio software and were subjected to energy
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minimization. All the structures were loaded to the
worksheet of TSAR. Chemical encoding scheme was used
to define substituent attached to the scaffold template by a
singlebond. All the structures and their defined substituent
were converted into high quality 3D structures using
Corina-make 3D option [Kramer, 2009]. Charges were
calculated using charge-2 packageavailablewith TSAR.
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Table I: Structure and biological activity data of 4-aminoquinoline derivatives
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Dataset preparation and descriptor calculation

ThelC,, valuesof all the 29 compounds used in the present
study were converted into negative logarithm of 1C,,. The
data set was randomly divided into the training and test set
of 21and 8 (namely 1, 2,5, 8,9, 23, 28 and 31) compounds,
respectively. The training set compounds were used to
develop the QSAR model while the test set compounds
were used to validate the developed model. The quality of
QSAR model aways depends on the accurate definition
and appropriate use of molecular descriptors. In present
study molecular descriptors were calculated for al the
compounds under consideration using TSAR 3.3 software.
Descriptors were obtained for all the structures as well as
for substituents defined. Descriptors with the same values
for al compounds were discarded. Pair-wise correlation
analysisof remaining descriptorswas performed (Agarwal
et al., 2012). For each pair of descriptors, the correlation
coefficient was calculated. If for two descriptors the
correlation coefficient was higher than 0.6, regression for
each of them was checked with biological activity.
Descriptors having high regression value were retained
and other onewasdiscarded (Mishraet al., 2012).

Linear regression analysis

A linear mathematical function that relates descriptor
valuestotheactivity may becreatedusingMLRand PLS.

The standard way of evaluating a model in QSAR is to
analyze »* between the activity and a set of independent
descriptors. However, a good QSAR model is considered
to be onewith ahigh value of /%, r’_, and F. r* representsthe
goodness of fit of themodel, r’cv isthe cross-validated * (a
measure of the quality of the QSAR model). The modeling
istakento be optimal when F reached amaximum together
with minimum standard error (Konovalov, 2008). Another
reliability check used was value of standard deviation (S),
which should be low. As an approach to check the
robustness and the predictive ability of the models
generated using MLR analysis, PLS anaysis was
performed on the sametraining set of compounds. Similar
to the cross-vaidation method used in MLR, model
generated during PLS analysis was also validated using
leaveout onerow (Paliwal et al., 2009 and Cramer, 1993).

During the course of MLR and PL S analysis some outliers
wereidentified to maximizethe predictability of the model
(Kramer, 2009) hence removed from the training set
various models were devel oped and checked for statistical
fitness. The models which satisfied the entire statistical
requirement were chosen and analyzed for descriptor
contributiontowardsanti-malarial activity.

Feed forward neural network analysis

Todisplay the dependency of each molecular descriptor (in
a qualitative manner), a constant value was fed into all
input nodes, except for the molecular descriptor in
question, which was varied over a range of 0.1-1.0. An
initial weighting value of 1.0 was applied to all
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connections. Starting weightsintherangeof -0.03to +0.03
and -1 to +1 for the initial node biases were selected. The
FFNN architecture was set to 3-1-1. The results were
visualized ona2D plot of output nodeagainst input.

RESULT AND DISCUSSION
Linear multivariate analysis

MLR and PLS were used to derive the QSAR equations.
After data reduction three descriptors were identified
which were independent to each other and were used to
developregressionmodel.

Outliers in QSAR can be very important and interesting,
especially when the observed biological activity is higher
than the predicted one by the developed model (higher
residual value). Four outliers (4, 19, 20 and 26) were
detected with the help of regression line of equation. After
excluding these compounds from the training set, the
statistical characteristics were improved significantly.
Therefore, these compounds were eventualy excluded
from the training set. Best MLR model obtained, with
excellent r’, and r-values for the training set are
represented by equation-1.

Equation-1 (MLR)
IC,;=-0.26%XX1+2.47xX2-1.35%X3-11.63

r=0.91,r°=0.83,r*,=0.76, f value= 37.39 and svalue =
0.37

Results obtained from conventional MLR were checked
with PLS anaysis using same data set. PLS model
(equation-2) complemented the ML R model intermsof (r?)
and predictability (r°,).

Equation-2 (PLS)
IC,;=-0.26%XX1+2.47xX2-1.35%X3-11.63

In equation [1] and [2], X1 is Dipole Moment X
Component (Subst. 1), X2 is First Atom E-State index
(Subst. 1), X3isVAMPLUMO (WholeMolecule)

Statistical significance=0.96,r*=0.83,1*,=0.77

Since for a well defined problem, both MLR and PLS
should generate comparable results, ther”and r’,, val ues of
MLR and the PL S modelswere evaluated and it was found
that both the models have comparable value of r* = 0.8370
for MLR and r* = 0.8370 for PLS, which is a relative
measure of fit by the regression equation. The high cross-
validated squared correl ation coefficient valueof r’,, = 0.76
for MLR and r°,, value of = 0.77 for PLS also shows good
internal productivity of themodel (Hawkins, 2003).

Test set prediction

The external predictive capability of QSAR model was
also checked using test sets of compounds that were
excluded during model development. All the compounds
in the test set were treated in a manner analogous to the
compoundsinthetraining set. Ther’ valueof MLR=0.76
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and PLS= 0.76 derived for the test set illustrate the high
predictiveability of themodel.

Feed forward neural network analysis

The results were visualized on a 2D plot of output node
against input. In present study a three layered neural
network has been used. The input descriptors were the
same as used for multivariate regression (MLR and PLS).
A close correlation coefficientsfor training set were given
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by the trained neural network architecture (r°,,,,=0.841).

The predictivity of MLR was compared to FFNN using
same external test set and value of r* was found to be
comparative (0.808). The dependency plots obtained in
FFNN are given in fig. 4-6. The analysis of al the plots
reveals that the relationship between biological activity
and three descriptorsiis linear and analogous to MLR and
PLSanaysis.

Theactual and predicted activity obtained fromMLR, PLS
and FFNN analysis for the training and test set of
compoundsareshowninfig. 1-3.
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Fig. 1: Plot between actual and predicted value using MLR analysis
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Fig. 2: Plot between actual and predicted value using PLS analysis
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Fig. 3: Plot between actual and predicted value using FFNN analysis
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Fig. 4: Plot between biological activity and dipole moment (subst. 1)

15



Output Value

Output Value

Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 11-17

I}Sr"
o4 |
03
oz

R

oo
Do

a1 02 03 04 05 0g 07 08 09
First Atom E-State index (Subst. 1)

Fig. 5: Plot between biological activity and first atom E-state index (subst.1)
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Interpretation of descriptors entered
Dipole moment X component (subst.1)

The dipole descriptor is a 3D €electronic descriptor that
indicates the strength and orientation behavior of a
molecule in an electrostatic field. Dipole moment X
component (Subst. 1) is negatively correlated with the
biological activity as evident from linear regression
analysis. Dependency plot of neural network analysis also
shows negative correlation (fig. 4). So with decrease in
dipole moment of molecule there will be increase in
biological activity.

First atom E-state index (subst.1)

Another important descriptor entering the model was first
atom E-state index (subst.1l). It is a type of electro
topological descriptor. The E-State has been established as
a composite index encoding both electronic and steric
properties. First atom E-state index is positively correlated
with biological activity, so at subst. 1 of whole molecule
with groupsthat increaseitsvaluewill leadto anincreasein
biological activity of lead molecule. Dependency plot of
FFNN analysis also shows positive correlation (fig. 5). So
with an increase in value of first atom E-state index in
molecul etherewill beincreaseinbiological activity.

VAMP LUMO (whole molecule)

The LUMO (lowest unoccupied molecular orbital)
descriptor addsthe energy (in electron volts) of the LUMO
for each model. It is important in governing molecular
reactivity and properties. The LUMO descriptor is a
measure of electrophilicity of a molecule. Negative
correlation of Vamp LUMO (whole molecule) with
biological activity clearly explainsthat thegroupswithlow
LUMO are required for good biologica activity. In the
FFNN dependence graphs of the triparametric model (Fig.
6), log 1C,, decreases with the increase in values of the
Vamp LUMO. Thedeceasing trendisconsistent withMLR
and PLSmodels.

CONCLUSION

The MLR, PLS and FFNN were employed to study the
anti-malarial activity of 4-aminoquinoline derivatives.
Highly predictive QSAR models were obtained using the
MLR, PLSand FFNN. All themodelswerevalidated using
external test set of eight compounds. All three different
statistical approaches (MLR, PLS and FFNN) generated
comparable results. The findings of present study will
certainly aid in the design of more potent anti-malarial
agents with improved activity and reduced mechanism
based side effectsof traditional anti-malarial agents.
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