Evaluation of Toxic Impacts of Mancozeb on Testis in Rats

Suresh C. Joshi*, Nandan Gulati, Anita Gajraj
Reproductive Toxicology Unit, Department of Zoology
Department of Zoology, University of Rajasthan, Jaipur 302004, India

Abstract: These days pollution of the environment by pesticides is a problem of great importance and is of everybody’s concern. Mancozeb, a fungicide, was listed for male reproductive toxicity. The fungicide was administered to Wistar strain male albino rats orally at the dose level of 500 mg/kg b.wt./day for 30 days. Sex organ weight analysis, fertility, biochemical and enzymatic parameters and testosterone level were the criteria used to evaluate the toxicity of Mancozeb on treated rats. The weight of testis, epididymis, seminal vesicle, and ventral prostate decreased significantly. Mancozeb treatment also brought about marked reduction in epididymis and testicular sperm counts in exposed males. Pre- and post-fertility test showed 80% negative results after treatment. A significant reduction in the testicular glycogen and sialic acid was observed whereas a significant increase in the protein and cholesterol content of testis was noticed. In addition, acid phosphatase enzyme activity increased significantly while alkaline phosphatase activity showed a sharp decline. Mancozeb also suppressed testosterone level significantly. In conclusion, Mancozeb exerts toxic effects on testis of rats.

Key words: Mancozeb, testis, sperm dynamics, testosterone.

Introduction

The ever increasing problem of population since last few decades has put tremendous pressure on land. To feed the galloping population, there is a shift in cultivation of recalcitrant varieties to high yielding varieties and this is followed by a sizable variety of invading pests (Giridhar and Indira, 1997). To subvert these pests, variety of pesticides came to picture, one of these are fungicides. These were hailed as miracles of modern technology. Given today’s extensive use of pesticides it is almost impossible for any one to avoid daily exposure to low level of several different pesticide residues. Pesticide incidents have more than doubled in the last 10 years. Each year 3 million people are poisoned by pesticides with 2,20,000 deaths (WHO, 1997).

* Corresponding Author Suresh C. Joshi Associate Professor, Ratnadeep, 170, Vishwakarma Nagar-I, Maharani Farm, Durgapura, Jaipur – 302018 (INDIA)
E-mail: s_c_joshi2003@rediffmail.com; Phone: +91-141-2762525 Fax: +91-141-2740141
The most direct and most hazardous exposures occur among those who manufacture and formulate them, or apply them, or live or work near the areas where they are used heavily (Skjei & Donald, 1983), which may have cumulative effects that lead to reproductive disorders (Lafuente et al., 2000). Introduction of new more toxic and rapidly disseminating pesticides into environment has necessitated accurate identification of their potential hazards to human health. Many pesticides are extremely toxic to mammals and other non-target organisms (Ankley & Jensen, 2001).

Studies are underway to address concern of potential persistent immunotoxic, reproductive, and neurotoxic effects of chronic and acute exposure to several pesticides. It is reported that pesticides may induce pathological changes in the testes and liver of rats (Dikshith and Datta, 1972; Joshi et al., 2003). Reproductive hormone profile among pesticide factory workers also have been reviewed (Padungtod et al., 1998). Occupational exposure to pesticides has increased parental risk of infertility whereas less is known about residential use of pesticides and the risk they pose to reproduction and development (Greenlee et al., 2004).

Mancozeb, an Inorganic-Zinc dithiocarbamate, is a typical fungicide with a carbamate structure where sulphurs replace both oxygens in the amide functional group. It is chemically identified as ethylenebisdithiocarbamate (EBDC). The poisoning caused with EBDC compounds cause symptoms of irritation of skin, eyes and respiratory tract, skin sensitization; chronic skin disease has also been observed in occupationally exposed workers. Mancozeb exposure is associated with pathomorphological changes in liver, brain and kidney. It has produced significant enzymatic changes in the activities of various enzymes (Kaackar et al., 1999). Inhibition of implantation by Mancozeb due to hormonal imbalance or its toxic effects has been studied (Bindali and Kaliwal, 2002). However, only few attempts have been made to observe the effects of Mancozeb on male reproductive system. Hence, present investigation was chosen to evaluate the testicular toxicity induced by Mancozeb in rats.

Material and Methods

Animal Model: Healthy adult male albino rats (*Rattus norvegicus*, Wistar Strain) of an average body weight 150-200 gms have been employed.
for experimentation. The animals were kept in clean polypropylene cages covered with chrome plates grills and maintained in an airy room with controlled room temperature of (20°C ± 5°C) with 14 : 10 hours light and dark cycle. The animals were mostly maintained on standard pellet diet procured from Ashirwad Industries, Chandigarh and occasionally on germinated/ sprouted gram and wheat seeds as an alternative feed. They were given clean water *ad libitum*.

Test Material and Dose: Technical grade Mancozeb (Ethylenebisdithiocarbamate / Inorganic-Zinc dithiocarbamate) obtained from Gupta chemicals Pvt. Ltd. Jaipur, was used for experimentation. The fungicide was administered to male rats through oral intubation at the dose level of 500 mg/kg b.wt./day for 30 days.

Experimental Procedure: Animals were divided into two groups having 6 animals each. Group I animals were kept as control and were administered olive oil only whereas animals of Group II were treated with the desired test compound at decided dose level. At the end of the experimentation, the rats were weighed, sacrificed under light ether anesthesia. The male reproductive organs were removed, weighed and processed for detailed biochemical and histopathological studies.

Fertility Test: The mating exposure test of the animals was performed. They were cohabited with proestrous females in the ratio of 1:3. The vaginal plug and presence of sperms in the vaginal smear was checked for positive mating. Females were separated and resultant pregnancies were noted when dams gave birth.

Sperm Dynamics: The sperm motility in cauda epididymis and density of testicular and cauda epididymis was determined (Prasad *et al.*, 1972)

Biochemical Parameters: The total protein (Lowry *et al.*, 1951), sialic acid (Warren, 1959), Glycogen (Montgomery, 1957) and Cholesterol (Zlatkis *et al.*, 1953) were assessed. Also, acid and alkaline phosphatase enzymatic activity was determined by King’s Method, (1959).

Hormonal Analysis: Radioimmunoassay of testosterone level was also performed (Belanger *et al.*, 1980)
Statistical Analysis: The data were analyzed statistically by using Student’s ‘t’ test (Gad and Weil, 1982) and the significance of differences was set at $P < 0.01$ and $P < 0.001$.

Results

Body and Organ Weights: There was no significant difference in body weight at the end of the experimental period among the treated groups. However, the weight of testis, epididymis ($P < 0.001$), ventral prostate and seminal vesicle ($P < 0.01$) were decreased significantly (Fig. 1).

![Fig. 1: Changes in Organ Weights after Mancozeb treatment](image)

Sperm Dynamics and Fertility: A significant decrease in sperm density in testis and cauda epididymis was observed ($P < 0.001$) after Mancozeb treatment (Fig. 2). Also, the sperm motility in cauda epididymis was severely impaired ($P < 0.001$) and fertility test showed 80% negative fertility (Fig. 3).
Fig. 2: Altered sperm density in testes and cauda epididymis after Mancozeb treatment

Fig. 3: Altered sperm motility in cauda epididymis and fertility test after Mancozeb treatment
Biochemical Changes: A marked reduction in sialic acid and glycogen content of testes was observed (P ≤ 0.01) whereas testicular cholesterol and protein increased (P ≤ 0.01, P ≤ 0.001) significantly (Table 1). Also a marked decline (P ≤ 0.01) in testosterone level and alkaline phosphatase activity has been observed whereas acid phosphatase activity increased significantly (P ≤ 0.01) (Table 2).

TABLE 1: Biochemical Changes In Testes After Mancozeb Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Protein</th>
<th>Sialic acid</th>
<th>Cholesterol</th>
<th>Glycogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Control</td>
<td>249.97</td>
<td>4.23</td>
<td>8.00</td>
<td>2.50</td>
</tr>
<tr>
<td>(Vehicle only)</td>
<td>± 1.922</td>
<td>± 0.067</td>
<td>± 0.707</td>
<td>± 0.190</td>
</tr>
<tr>
<td>Group II Experimental</td>
<td>302.19**</td>
<td>3.90*</td>
<td>10.0*</td>
<td>1.68*</td>
</tr>
<tr>
<td>(500 mg/kg b.wt. of Mancozeb for 30 days)</td>
<td>± 4.968</td>
<td>± 0.042</td>
<td>± 1.11</td>
<td>± 0.203</td>
</tr>
</tbody>
</table>

TABLE 2: Changes in Serum Analysis after Mancozeb Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Acid Phosphatase</th>
<th>Alkaline Phosphatase</th>
<th>Testosterone (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Control</td>
<td>4.59</td>
<td>64.75</td>
<td>2.45</td>
</tr>
<tr>
<td>(Vehicle only)</td>
<td>± 2.28</td>
<td>± 2.28</td>
<td>± 0.68</td>
</tr>
<tr>
<td>Group II Experimental</td>
<td>10.62*</td>
<td>47.20*</td>
<td>1.60*</td>
</tr>
<tr>
<td>(500 mg/kg b.wt. of Mancozeb for 30 days)</td>
<td>± 1.19</td>
<td>± 4.03</td>
<td>± 0.73</td>
</tr>
</tbody>
</table>

* = P ≤ 0.01
** = P ≤ 0.001
Values ± SEM 6 determinations.
Testicular Histopathology : The control rat testis showed seminiferous tubules with all the successive stages of spermatogenesis (Fig. 4). Marked histopathological changes were observed in the seminiferous tubules after Mancozeb treatment in rats. These changes include damaged seminiferous tubules, which showed complete spermatogenic arrest, the lumen contained cellular debris and is devoid of sperms (Fig. 5).

Fig. 4 : **Control**: Microphotograph of control rat testis showing normal histological features, with all the successive stages of spermatogenesis. Lumen filled with spermatozoa Leydig cells are also present. (H & E 200X)

Fig. 5 : **Mancozeb 500 mg/kg/b.wt. for 30 days** : Photograph showing arrest of spermatogenesis, deformed and damaged tubule with degenerated Sertoli cells. Lumen is filled with cellular debris. (H&E 200X).
Exponential increase in the production, use and disposition of chemicals have a profound impact on the environment and creates unforeseen hazards to man’s well being (Desjardins, 1985; Chia, 2000). The present study revealed that administration of Mancozeb (500 mg/kg/b.wt./day for 30 days) to male rats resulted in testicular toxicity. The weight of testis is largely dependent on the mass of differentiated spermatogenic cells and the reduction in the weight of testis may be due to the decreased number of germ cells and elongated spermatids (Chapin et al., 1997). The observed reduction in weight of accessory sex organs may be due to reduced bioavailability and the estrogenic and/or antiandrogenic activities of Mancozeb (Mills, 1990).

Low caudal epididymal sperm density may be due to alteration in androgen metabolism. The physiological and biochemical integrity of epididymis are dependent on androgens (Brooks, 1979). The 80% negative fertility test may be attributed to lack of forward progression and reduction in density of spermatozoa and altered biochemical milieu of cauda epididymis (Joshi et al., 2003). Treatment with Mancozeb also changes the biochemical parameters of the reproductive tract. A fall in glycogen level may be due to interference in glucose metabolism. Fungicides induce inhibition of glycolytic enzymes, which may affect the maturational process of spermatozoa and their motility. Inhibition of glycogen synthesis eventually decreases spermatogenesis process (Desta, 1994). Reduction in testicular sialic acid content may be due to absence of spermatozoa or reduced androgen production (Dixit and Gupta, 1987). Elevation in total protein content may be due to the hepatic detoxification, which results in the inhibitory effect on the activities of enzymes involved in the androgen biotransformation (Dikshith and Datta, 1972). Increased concentration of cholesterol in testes suggests that impairment of spermatogenesis is due to decreased androgen concentration (Bedwal et al., 1994).

A significant reduction in the alkaline phosphatase activity may be attributed to the decreased osteoblastic activity of bone, since it is formed and present in the osteoblasts (Naqvi and Vaishnavi, 1993). The increase in acid phosphatase activity may be the result of labialization of lysosomal
system (Zimmermann and Seff, 1982; Johal et al., 2003). The reduction in serum testosterone demonstrated the inhibitory effects of Mancozeb on the secretion of pituitary gonadotrophins (FSH and LH), and in turn on the testosterone biosynthesis like other pesticides (Singh and Pandey, 1990). Hence, from the results it can be concluded that Mancozeb exerts testicular toxicity in albino rats.

References

Testicular Toxicity of Mancozeb

